in

StableClim, continuous projections of climate stability from 21000 BP to 2100 CE at multiple spatial scales

  • 1.

    Fordham, D. A., Brook, B. W., Moritz, C. & Nogues-Bravo, D. Better forecasts of range dynamics using genetic data. Trends Ecol. Evol. 29, 436–443, https://doi.org/10.1016/j.tree.2014.05.007 (2014).

    Article  PubMed  Google Scholar 

  • 2.

    Fordham, D. A. et al. Using paleo-archives to safeguard biodiversity under climate change. Science, https://doi.org/10.1126/science.abc5654 (2020).

  • 3.

    Nogués-Bravo, D. et al. Cracking the code of biodiversity responses to past climate change. Trends Ecol. Evol. 33, 765–776, https://doi.org/10.1016/j.tree.2018.07.005 (2018).

    Article  PubMed  Google Scholar 

  • 4.

    Fordham, D. A. & Nogues-Bravo, D. Open-access data is uncovering past responses of biodiversity to global environmental change. PAGES 26, 77–77, https://doi.org/10.22498/pages.26.2.77 (2018).

    Article  Google Scholar 

  • 5.

    Fine, P. V. A. Ecological and evolutionary drivers of geographic variation in species diversity. Annu. Rev. Ecol. Evol. Syst. 46, 369–392, https://doi.org/10.1146/annurev-ecolsys-112414-054102 (2015).

    Article  Google Scholar 

  • 6.

    Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361, eaar5452, https://doi.org/10.1126/science.aar5452 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 7.

    Lister, A. M. & Stuart, A. J. The impact of climate change on large mammal distribution and extinction: Evidence from the last glacial/interglacial transition. C. R. Geosci. 340, 615–620, https://doi.org/10.1016/j.crte.2008.04.001 (2008).

    Article  Google Scholar 

  • 8.

    Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L., Rahbek, C. & Fordham, D. A. Persistent quaternary climate refugia are hospices for biodiversity in the anthropocene. Nat. Clim. Change., https://doi.org/10.1038/s41558-019-0682-7 (2020).

  • 9.

    Fjeldså, J. & Lovett, J. C. Geographical patterns of old and young species in African forest biota: The significance of specific montane areas as evolutionary centres. Biodivers. Conserv. 6, 325–346, https://doi.org/10.1023/A:1018356506390 (1997).

    Article  Google Scholar 

  • 10.

    Haffer, J. Speciation in Amazonian forest birds. Science 165, 131–137, https://doi.org/10.1126/science.165.3889.131 (1969).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 11.

    Harrison, S. & Noss, R. Endemism hotspots are linked to stable climatic refugia. Ann. Bot. 119, 207–214, https://doi.org/10.1093/aob/mcw248 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    Armstrong, E., Hopcroft, P. O. & Valdes, P. J. A simulated northern hemisphere terrestrial climate dataset for the past 60,000 years. Sci. Data 6, 265, https://doi.org/10.1038/s41597-019-0277-1 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. Paleoclim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 180254, https://doi.org/10.1038/sdata.2018.254 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Lorenz, D. J., Nieto-Lugilde, D., Blois, J. L., Fitzpatrick, M. C. & Williams, J. W. Downscaled and debiased climate simulations for north america from 21,000 years ago to 2100 AD. Sci. Data 3, 160048, https://doi.org/10.1038/sdata.2016.48 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, https://doi.org/10.1126/science.aah4787 (2017).

  • 16.

    Nogués-Bravo, D. et al. Amplified plant turnover in response to climate change forecast by late quaternary records. Nat. Clim. Change. 6, 1115–1119, https://doi.org/10.1038/nclimate3146 (2016).

    ADS  Article  Google Scholar 

  • 17.

    Maiorano, L. et al. Building the niche through time: Using 13,000 years of data to predict the effects of climate change on three tree species in Europe. Global Ecol. Biogeogr. 22, 302–317, https://doi.org/10.1111/j.1466-8238.2012.00767.x (2013).

    Article  Google Scholar 

  • 18.

    Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499, https://doi.org/10.1126/science.1237184 (2013).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 19.

    Lima-Ribeiro, M. S. et al. Ecoclimate: A database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodiversity Informatics 10, 1–21, https://doi.org/10.17161/bi.v10i0.4955 (2015).

    Article  Google Scholar 

  • 20.

    Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bølling–Allerød warming. Science 325, 310–314, https://doi.org/10.1126/science.1171041 (2009).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 21.

    Otto-Bliesner, B. L. et al. Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation. Science 346, 1223, https://doi.org/10.1126/science.1259531 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 22.

    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241, https://doi.org/10.1007/s10584-011-0156-z (2011).

    ADS  CAS  Article  Google Scholar 

  • 23.

    van Vuuren, D. P. et al. The representative concentration pathways: An overview. Clim. Change 109, 5–31, https://doi.org/10.1007/s10584-011-0148-z (2011).

    ADS  Article  Google Scholar 

  • 24.

    van Oldenborgh, G. J. et al. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 1311–1393 (Cambridge University Press, Cambridge, United Kingdom, 2013).

  • 25.

    Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74, https://doi.org/10.1126/science.1228282 (2013).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 26.

    Botta, F., Dahl-Jensen, D., Rahbek, C., Svensson, A. & Nogues-Bravo, D. Abrupt change in climate and biotic systems. Curr. Biol. 29, R1045–R1054, https://doi.org/10.1016/j.cub.2019.08.066 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 27.

    Fordham, D. A. et al. Predicting and mitigating future biodiversity loss using long-term ecological proxies. Nat. Clim. Change. 6, 909–916, https://doi.org/10.1038/nclimate3086 (2016).

    ADS  Article  Google Scholar 

  • 28.

    Fordham, D. A. et al. Paleoview: A tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography 40, 1348–1358, https://doi.org/10.1111/ecog.03031 (2017).

    Article  Google Scholar 

  • 29.

    Fordham, D. A., Saltré, F., Brown, S. C., Mellin, C. & Wigley, T. M. L. Why decadal to century timescale palaeoclimate data are needed to explain present-day patterns of biological diversity and change. Global Change Biol. 24, 1371–1381, https://doi.org/10.1111/gcb.13932 (2018).

    ADS  Article  Google Scholar 

  • 30.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. 93, 485–498, https://doi.org/10.1175/Bams-D-11-00094.1 (2012).

    ADS  Article  Google Scholar 

  • 31.

    Otto-Bliesner, B. L. et al. Climate sensitivity of moderate- and low-resolution versions of CCSM3 to preindustrial forcings. J. Clim. 19, 2567–2583, https://doi.org/10.1175/Jcli3754.1 (2006).

    ADS  Article  Google Scholar 

  • 32.

    Collins, W. D. et al. The community climate system model version 3 (CCSM3). J. Clim. 19, 2122–2143, https://doi.org/10.1175/jcli3761.1 (2006).

    ADS  Article  Google Scholar 

  • 33.

    Gent, P. R. et al. The community climate system model version 4. J. Clim. 24, 4973–4991, https://doi.org/10.1175/2011jcli4083.1 (2011).

    ADS  Article  Google Scholar 

  • 34.

    Barker, S. et al. Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457, 1097–1102, https://doi.org/10.1038/nature07770 (2009).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 35.

    Carlson, A. E. In The encyclopedia of quaternary science Vol. 3 (ed Elias, S. A.) 126–134 (Elsevier, Amsterdam, 2013).

  • 36.

    Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L. & Brewer, S. Reconciling divergent trends and millennial variations in holocene temperatures. Nature 554, 92, https://doi.org/10.1038/nature25464 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 37.

    Deser, C., Knutti, R., Solomon, S. & Phillips, A. S. Communication of the role of natural variability in future north American climate. Nat. Clim. Change. 2, 775, https://doi.org/10.1038/nclimate1562 (2012).

    ADS  Article  Google Scholar 

  • 38.

    Lutz, A. F. et al. Selecting representative climate models for climate change impact studies: An advanced envelope-based selection approach. Int. J. Climatol. 36, 3988–4005, https://doi.org/10.1002/joc.4608 (2016).

    Article  Google Scholar 

  • 39.

    Tebaldi, C. & Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Philos. T. R. Soc. A. 365, 2053–2075, https://doi.org/10.1098/rsta.2007.2076 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  • 40.

    Schulzweida, U. CDO user guide (version 1.9.3). https://doi.org/10.5281/zenodo.3539275, (2019).

  • 41.

    Kaplan, J. O. et al. Holocene carbon emissions as a result of anthropogenic land cover change. Holocene 21, 775–791, https://doi.org/10.1177/0959683610386983 (2011).

    ADS  Article  Google Scholar 

  • 42.

    Santer, B. D. et al. Identifying human influences on atmospheric temperature. Proc. Natl. Acad. Sci. USA 110, 26–33, https://doi.org/10.1073/pnas.1210514109 (2013).

    ADS  Article  PubMed  Google Scholar 

  • 43.

    Fordham, D. A., Wigley, T. M. L., Watts, M. J. & Brook, B. W. Strengthening forecasts of climate change impacts with multi-model ensemble averaged projections using MAGICC/SCENGEN 5.3. Ecography 35, 4–8, https://doi.org/10.1111/j.1600-0587.2011.07398.x (2012).

    Article  Google Scholar 

  • 44.

    Fordham, D. A., Brown, S. C., Wigley, T. M. L. & Rahbek, C. Cradles of diversity are unlikely relics of regional climate stability. Curr. Biol. 29, R356–R357, https://doi.org/10.1016/j.cub.2019.04.001 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 45.

    Sen Gupta, A., Jourdain, N. C., Brown, J. N. & Monselesan, D. Climate drift in the CMIP5 models. J. Clim. 26, 8597–8615, https://doi.org/10.1175/Jcli-D-12-00521.1 (2013).

    ADS  Article  Google Scholar 

  • 46.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar D. & R Core Team nlme: linear and nonliner mixed effects models, https://CRAN.R-project.org/package=nlme (2017).

  • 47.

    R Core Team R: A language and environment for statistical computing https://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2018).

  • 48.

    Pierce, D. W., Barnett, T. P., Santer, B. D. & Gleckler, P. J. Selecting global climate models for regional climate change studies. Proc. Natl. Acad. Sci. USA 106, 8441, https://doi.org/10.1073/pnas.0900094106 (2009).

    ADS  Article  PubMed  Google Scholar 

  • 49.

    Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39, https://doi.org/10.1029/2011gl050087 (2012).

  • 50.

    IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 1535 (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013).

  • 51.

    Theodoridis, S. et al. Evolutionary history and past climate change shape the distribution of genetic diversity in terrestrial mammals. Nat. Commun., https://doi.org/10.1038/s41467-020-16449-5 (2020).

  • 52.

    Nadeau, C. P., Urban, M. C. & Bridle, J. R. Coarse climate change projections for species living in a fine-scaled world. Globl Chang Biol 23, 12–24, https://doi.org/10.1111/gcb.13475 (2017).

    ADS  Article  Google Scholar 

  • 53.

    Frame, D., Joshi, M., Hawkins, E., Harrington, L. J. & de Roiste, M. Population-based emergence of unfamiliar climates. Nat. Clim. Change. 7, 407, https://doi.org/10.1038/Nclimate3297 (2017).

    ADS  Article  Google Scholar 

  • 54.

    Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L. & Fordham, D. A., StableClim. The University of Adelaide https://doi.org/10.25909/5ea59831121bc (2020).

  • 55.

    Dowle, M. & Srinivasan, A. data.table: extension of ‘data.frame’, https://CRAN.R-project.org/package=data.table (2019).

  • 56.

    Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436, https://doi.org/10.1038/20859 (1999).

    ADS  CAS  Article  Google Scholar 

  • 57.

    Andersen, K. K. et al. The Greenland ice core chronology 2005, 15–42ka. Part 1: Constructing the time scale. Quat. Sci. Rev. 25, 3246–3257, https://doi.org/10.1016/j.quascirev.2006.08.002 (2006).

    ADS  Article  Google Scholar 

  • 58.

    Rasmussen, S. O. et al. Synchronization of the NGRIP, GRIP, and GISP2 ice cores across MIS 2 and palaeoclimatic implications. Quat. Sci. Rev. 27, 18–28, https://doi.org/10.1016/j.quascirev.2007.01.016 (2008).

    ADS  Article  Google Scholar 

  • 59.

    Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253, https://doi.org/10.1111/j.1541-0420.2005.00440.x (2006).

    MathSciNet  Article  PubMed  PubMed Central  MATH  Google Scholar 

  • 60.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46, https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x (2001).

    Article  Google Scholar 

  • 61.

    Clarke, K. R. & Gorley, R. N. PRIMER v6: User manual/tutorial. (PRIMER-E, Plymouth, 2006).

  • 62.

    Anderson, M. J., Gorley, R. N. & Clarke, K. R. Permanova+ for PRIMER: Guide to software and statistical methods. (PRIMER-E, Plymouth, 2008).

  • 63.

    Clark, P. U. et al. Global climate evolution during the last deglaciation. Proc. Natl. Acad. Sci. USA 109, E1134, https://doi.org/10.1073/pnas.1116619109 (2012).

    Article  PubMed  Google Scholar 

  • 64.

    Liu, Z. et al. Younger Dryas cooling and the Greenland climate response to CO2. Proc. Natl. Acad. Sci. USA, https://doi.org/10.1073/pnas.1202183109 (2012).

  • 65.

    McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837, https://doi.org/10.1038/nature02494 (2004).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 66.

    Peck, V. L. et al. The relationship of Heinrich events and their European precursors over the past 60ka BP: A multi-proxy ice-rafted debris provenance study in the north east atlantic. Quat. Sci. Rev. 26, 862–875, https://doi.org/10.1016/j.quascirev.2006.12.002 (2007).

    ADS  Article  Google Scholar 

  • 67.

    Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49, https://doi.org/10.1038/nature10915 (2012).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 68.

    Carlson, A. E. & Winsor, K. Northern hemisphere ice-sheet responses to past climate warming. Nat. Geosci. 5, 607–613, https://doi.org/10.1038/ngeo1528 (2012).

    ADS  CAS  Article  Google Scholar 

  • 69.

    Renssen, H. & Isarin, R. F. B. The two major warming phases of the last deglaciation at 14.7 and 11.5 ka cal BP in Europe: Climate reconstructions and AGCM experiments. Global Planet. Change 30, 117–153, https://doi.org/10.1016/S0921-8181(01)00082-0 (2001).

    ADS  Article  Google Scholar 

  • 70.

    Alley, R. B. & Ágústsdóttir, A. M. The 8k event: Cause and consequences of a major holocene abrupt climate change. Quat. Sci. Rev. 24, 1123–1149, https://doi.org/10.1016/j.quascirev.2004.12.004 (2005).

    ADS  Article  Google Scholar 

  • 71.

    Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29, 1165–1188, https://doi.org/10.1214/aos/1013699998 (2001).

    MathSciNet  Article  MATH  Google Scholar 

  • 72.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642, https://doi.org/10.1002/joc.3711 (2014).

  • 73.

    Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106, 7183–7192, https://doi.org/10.1029/2000jd900719 (2001).

    ADS  Article  Google Scholar 

  • 74.

    Wigley, T. M. MAGICC/SCENGEN 5.3: User manual (version 2). (NCAR, Boulder, Colorado, 2008).

    Google Scholar 

  • 75.

    Wilcox, R. R. The percentage bend correlation coefficient. Psychometrika 59, 601–616, https://doi.org/10.1007/BF02294395 (1994).

    Article  MATH  Google Scholar 

  • 76.

    Watterson, I. G. Non-dimensional measures of climate model performance. Int. J. Climatol. 16, 379-391, https://doi.org/10.1002/(Sici)1097-0088(199604)16:4<379::Aid-Joc18>3.0.Co;2-U (1996).

  • 77.

    Willmott, C. J. On the validation of models. Phys. Geogr. 2, 184–194, https://doi.org/10.1080/02723646.1981.10642213 (2013).

    Article  Google Scholar 

  • 78.

    Santer, B. D., Wigley, T. M., Schlesinge, M. E. & Mitchell, J. F. B. Developing climate scenarios from equilibrium GCM results. (Max Planck Institute for Meteorology, Hamburg, Germany, 1990).


  • Source: Ecology - nature.com

    Institute Professor Emeritus Mario Molina, environmental leader and Nobel laureate, dies at 77

    Deep amoA amplicon sequencing reveals community partitioning within ammonia-oxidizing bacteria in the environmentally dynamic estuary of the River Elbe